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Abstract 

 
 Many researches look for new processor approaches 
to work with  high-performance, battery-powered 
devices, such as cellular phones. In this paper we 
present an approach for designing an asynchronous  
processor using higher-order Petri nets (HOPN). 
HOPNs form a new class of Petri nets that exploits 
the properties of higher-order neural networks.  The 
concepts of higher-order arcs will be applied in order 
to model accurate circuit  properties, such as timing 
information, connection, and concurrency. We 
consider  HOPNs with transitions that have indegree  
≤ 1. As a prototype for our design approach we use 
Holton’s Processor. We follow the top-down design, 
in which we refine the top-level specification  until we 
reach to the implementable level. For analyzing the 
HOPN, a theorem on the relationship between the 
potential firability of the goal transition and T-
invariant is proved. The circuit synthesis 
corresponding to the HOPN is discussed. We use the 
properties of the HOPNs to check the validity of our 
design. 
Index words: Petri nets (PN), higher-order Petri nets 
(HOPN), Processor design, Holton’s processor 
model, Validity analysis. 
 
1. Introduction 
 

   Many ideas have been proposed by various 
researchers to make future microprocessors run at 
higher frequencies than current ones. New approaches 
are needed to deal with associated problems including 
heat elimination and power consumption. One 
promising approach  is the asynchronous design, 
where no global circuit clock  exists. This approach 
has implications for low power circuits such as those 
needed for   cellular phones, PDAs, and other high-
performance, battery-powered devices [GEE05] 

   Petri nets have been widely used for the modeling 
and analysis of concurrent systems [Rei85]. There are 
many factors that contribute to their success: The 
graphical nature, the ability to model parallel and 
distributed processes in natural manner, the simplicity 
of the model, and the firm mathematical foundations. 
Petri nets are also used in the real-time systems and 
logic applications. The firm mathematical foundations 
make Petri nets useful in expressing potential hazards 
in circuits. Also Petri nets can be used as a modeling 
language to perform formal synthesis and high-level 
analysis of complex processor, and signal processing 
chips design. Petri nets can translate into VHDL, and 
can be integrated into existing design environments 
[Sem97].  
   In some cases, the classical Petri nets can not model 
the behavior of the system accurately. To solve this 
problem, researchers proposed many extensions to the 
basic Petri nets. Examples are: Timed Petri nets 
[Van89] and [Ajm84]; colored Petri nets [Gen81] and 
[Van89]. 
In the same sense [Cho97] used the similarities 
between neural networks and Petri nets to exploit the 
properties of higher-order neural networks in a new 
class of Petri nets called Higher Order Petri Nets 
(HOPN). He uses the heuristic introduction of higher-
order synaptic weights in neural networks to extend 
the concept of an arc in PN to a general higher-order 
arc. This extension makes the new class of Petri net 
more accurate in modeling  asynchronous circuits 
properties. In section 2 the concepts and the structures 
of higher-order Petri nets are briefly reviewed. 
   The design of an asynchronous processor takes 
place in most researchers' work. Several design 
groups introduce asynchronous processor designs. 
Among them, Amulet1 from Manchester university 
[Fur93], an asynchronous microprocessor from the 
California Institute of Technology in Pasadena [Mar 
90], the Mayfly microprocessor from Hewlett-
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Packard Labs [Dav 92], and the TITAC from Tokyo 
Institute of Technology [Tak 94]. 
   Each of these design groups used their own notation 
during the design process. For example, the design 
produced by [Fur93] represented virtually without 
using formal methods. The Amulet1 is an 
implementation or the ARM processor architecture 
using the micropipeline design style. The 
microprocessor designed by [Mar90] used a language 
called Communication Hardware processor. [Dav92] 
used algebraic models to verify the specifications and 
implementations of finite state machines for the 
Mayfly distributed memory microprocessor. The 
TITAC design based on quasi-delay-insensitive is a 
hardware chip designed and implemented as a CMOS 
gate array. 
There was also early attempts to model and analyze 
processors formally. [Sem97] produce the 
asynchronous design of Holton’s processor, which 
demonstrates the fundamentals of processor 
operation. This design is scalable and can be 
developed further into a fully operational version. His 

aim was not to develop a complete hardware device, 
but to demonstrate design methods that use Petri nets 
and their modeling power. In section 3 we present the 
Holton’s processor, which demonstrates the 
fundamentals of processor operation. This processor 
will be the prototype of our asynchronous design. 
   In section 4 we introduce the basic design of 
Holton’s processor using the same top-down 
specifications that used in [Sem97]. We produce a 
labeled higher-order Petri net that has only labeled 
transition  with actions of the corresponding modules. 
     In section 5 the relation between the T-invariant 
and potential firing of the goal transition is discussed. 
A theorem has been stated and proved that can be  
used in analysing the labeled higher-order Petri nets 
properties such as safeness, liveness, and deadlocks 
free. 
       In section 6 we discuss the translating of the 
higher-order Petri nets into  hardware elements. The 
asynchronous circuit synthesis corresponding to 
labeled higher-order Petri net is given. The 
conclusion is drawn in section 7. 

Clock

Instruction 
decoder 

 

Add 
Store 
LdAcc

 

ClkStar

Instruction 
register

Buffe 
Clock

Program Buffe 
Clock

Buffe 
Clock

Buffe 
Clock

Buffe 
Clock

Buffe 

General 

 

Acc

Address 

 

Memory

Buffe 
Clock

 

ALU

Fig 1: Synchronous implementation of a processor



 3

2. Higher-Order Petri Nets (HOPN) 
 
A classical marked Petri net is a 5-tuple PN=( P, T, F, 
W, Mo ) , where P = { p1 , p2 , ……. , pn } is a finite 
set of places, P ≠ Ø ; T = { t1 , t2 , ……. , tm } is a 
finite set of transitions, T ≠  Ø ;  P ∩ T = Ø, P ∪ T ≠  
Ø , m > 0, n  > 0; F ⊆ (Tx P ) ∪ (P x T) is a set of 
arcs; W:F  → N is the weight function; M0: P → N is 
the initial marking. 
Definition of a HOPN: A Higher_Order Petri Net is 
also a 5-tuple, HOPN= (P, T, F, W, M0), where P, T 
and M0 are defined as in the classical case; F ⊆ (P x 
T) ∪ (P2 x T) ∪ … ∪ (Pn x T) ∪ (T x P) is a set of 
arcs. IF f∈ (Pi x T), the f is called the ith-order arc; 
W:F→ N is a weight function, where N represents the 
set of nonnegative integers. The major differences 
between an HOPN and a classical PN are the 
definitions of the arc and the weight function. In 

HOPN, we denote 
)(

)}({
i

ir k
f  where 

)(
)({

i
ir k

f ∈ (Pk x T), k= 1.2,… n and 
)j(

)}i(r{ k
w as the 

kth order input arc of transition t, from places Pr (1), 
Pr (2),…, Pr(k), and its corresponding weight 
respectively, where {r (I)} k= {r (I), r (2),… R (k)} ⊆ 
{1, 2, …, n} and r (I) < r (2) <… < r (k). We also 
denote arc ftf as the out put arc from transition tI to 
place Pj, where Ftj ∈ (T x P), and its corresponding 
weight as vij. 
A transition tj is enabled iff 

               ∃ 
)j(

)}i(r{ k
f ∈ (Pk x T) ∋ 

)j(
)}i(r{ k

W ≤ 

)j(
)}i(r{ k

Q ∀ 
)j(

)}i(r{ k
P  

Where 
)j(

)}i(r{ k
P = { Pr(1) , Pr (2) ,…, Pr (k)} and { r (1), 

r(2),…, r (k)} ⊆ {1, 2, …, n}, k= 1, 2, …, n, 
 Q (P{r (I)}k) is the number of tokens in input places Pr 

(1), Pr (2), …, Pr (k) connected on the kth  order  input arc 
)j(

)}i(r{ k
f of transition tj. This  means that, the 

transition tj is said to be enabled if  at least one of its 
kth order input arcs has places that have at least many 
tokens as the weight of this kth order arc. Such an arc 
is called an enabled arc. This leads us to the fact that, 
it may be exist more than one enabled arc. But one 
enabled arc alone can make the transition enabled. 
An enabled transition tj may or may not fire. When tj 
fires then one of its enabled arcs fires. Let the arc 

)j(
)}i(r{ k

f fire Q (P {r (I)}k) = Q(P {r (I)}k) -
)j(

)}i(r{ k
W , ∀ 

(P {r (I)}k) ∈ PIN (tj) ∧ Q (Pout (tj)) = Q (Pout (tj)) + W 
(Pout, tj), ∀ Pout, (tj) ∈ Pout (tj), ∈ Pout (tj), ∀ P{r (I)}k ∈ 
PIN (tj) Where Q (P {r (I)} k) is the new number of 
tokens in input places Pr (I), Pr (2) ,…, Pr (k) connected 

on the kth- order input arc 
)j(

)}i(r{ k
f of transition tj. 

This means that when the transition tj fires then the 
number of tokens in each of the input places p{r (I)}k 
related to the fired arc is reduced by the number that 
is equal to the weights assigned to the fired arc from 
p{r (I)} k to tj, and the number of tokens in each of its 
output places increases by the number that is equal to 
the weights of the output arcs from the transition tj. 
The reachability set R (PN, M0), for a higher- order 
petri net HOPN= (P, T, F, W, M0), is the set of all 
markings that can be reached from its initial marking 
by all possible firings of transitions. R (PN, M0)= { 
Mk: Mk= δ (M0, σ), k= 0,1,2,……}, where σ is the 
sequence of all possible firing of enabled transitions 
initially with the initial marking M0 until we reach to 
the marking Mk. 
Safeness is one of the more important properties for 
higher- order petri net which is useful to model a real 
hardware device. A place PI is safe iff Q (PI) ≤ 1 ∀ MI 
∈ R (PN, M0), i= 0,1,2,….. A higher order petri net is 
said to be safe iff Q (PI)  ≤1 ∀ MI ∈ R (PN, M0) ∀ PI 
∈  P, I= 0,1,2,…… That is, a higher order petri net is 
safe if all places in the net are safe at any marking. 
A transition tj is deadlock iff 

Q (Pin (tj)) < )j(
)}i(r{ k

W  

                    ∀ Ms∈ R (PN, M0) I, j, s, k ∈ K. 
For all or some (Pin (tj) ∈ PIN (tj). 
A transition tj is deadlock (blocked) if there is no 
any reachable marking can make this transition 
enabled. Also a reachable marking is deadlock if 
it can not make any transition enabled. A higher- 
order petri net is deadlock at marking MK ∈ R 
(PN, M0) iff  

Q (Pin (tj)) < )j(
)}i(r{ k

W  ∀ tj ∈ T    I, j, s, k ∈ K. 

For all  or some  (Pin , (tj) ∈ PIN (tj). 
That is, a higher- order petri net is deadlock if all 
transitions are not enabled at certain marking. So 
a higher- order Petri net is free of deadlocks if its 
reachability set includes no deadlocks.  
A transition tj is live iff 
     ∃ MI  ∈ R (PN, M0) s.t Q (Pin (tj)) ≥ W (Pin, tj ) 
at MI  
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∀ Pin  (tj)) ∈ PIN (tj) and Mk = δ (MI, tj), Mk ∈ R 
(PN, M0) 
That is, a transition is live if it not deadlock. This 
does not mean that the transition is enabled at 
any marking, but rather than it can be enabled. In 
other word there exist marking MI ∈ R (PN, M0 ) 
can make tj enabled. 
( i.e. ∃ MI ∈ R (PN, M0) s.t MI → Mk ∈ R (PN, 
M0))  
A higher- order petri net is live if MI ∈ R (PN, 
M0) ∃ Mk ∈ R (PN, M0) s.t Mk = δ (MI, tj) ∀ tj ∈ 
T,  I, j, k, ∈ K. That is, a higher- order petri 
net is live its all transitions are live.  
Transition ti  and tj are in structural conflict if  
   ∃ pk ∈ PIN(ti) ∧ pk ∈ PIN(tj) 

This means that transitions ti  and tj are in 
structural conflict if they share at least one input 
place. 
Transition ti  and tj are in dynamic conflict if  
i. tI and tj are in structural conflict. 
ii. Q (Pin k (tj)) ≥ W (Pin k, tj), Q (Pin s (tI)) ≥ W (Pin 

s , tI) 
∀ (Pin k (tj)) ∈ PIN   (tj), ∀ (Pin s (tI)) ∈ (Pin s , tI) at 
marking M1, where I, j, k, s, 1 ∈  K. 
iii. If tI fires then Q (P in k (tj)) < W (Pin k, tj) for 
some or for all Pin k (tj) ∈ PIN (tj). 
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3. Synchronous processor model 
 
[Hol77] introduces the description of a simple 3- bit 
processor design. This processor contains the major 
operational modules; IR, ID, PC, GR, Acc, ALU, AD, 
and Mem. All these modules  contain the following 
instruction set; load accumulator (LdAcc), load 
general register (LdGR), arithmetic operation (Arth), 
and store. The processor has no jump instruction. Fig. 
1 illustrates the architecture of Holton processor  
model. This design uses a common clock to 
synchronize data transfer between processor modules. 
The processor’s operational cycle is subdivided into 
two phases; Fetch cycle that performed by the 
program control unit, which must obtain the 
instruction from main memory. Instruction cycle that 
performed by the data processing unit, which must 
execute the instruction fetched from memory. Each 
phase requires two clock cycles. At the first cycle, the 
PC is increment and the  new value of the PC is 
presented to memory. At the second cycle, MAR 

specify the address at which the fetched word is read , 
and reading it from memory at the specified address 
and latch the fetched word in the IR. Now the fetch 
phase is complete and the processor enters the 
execution phase. At the third cycle ID decodes the 
instruction, and then the appropriate modules are 
activated and connected to the  common bus. At the 
last cycle, complete the execution of instruction 
fetched from memory.This model is synchronous and 
has some problems:   
1- Loss of  power. Since each module is clocked at 

each clock period, this will cause loss of power.  
2- Inefficiency. The delay of the longest execution 
cycle determines the clock period. Therefore, the 
average speed of the processor is bounded by the 
worst-case delay. 
We use HOPNs to construct the asychronous version 
of this synchronous processor. Especially, after 
producing an asynchronous one using PN [Sem 97]. 
In chapter 5 we give the representation of the 
asynchronous version of this processor using HOPN.  
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Fig 3: Model refinement for Holton’s 
processor (first processor version) 



 6

4. Asynchronous design using HOPN 
 
In this section we use the same refinement used in 
[Sem 97] to give labeled HOPN that contain labeled 
transitions (each one correspond to one module in 
Holton’s processor). Transition  labels  are action  of 
corresponding modules. 
 When we consider the initial specification (general 
consideration of the processor, such as the function of 
the processor, how the processor works, or the 
strategies of the work) we observe that, the processor 
has two stages instruction fetch (IF) and instruction 
execution (IE), in which the processor operates 
mutually (one follow the other, but not 
simultaneously). IF transition can be decomposed into 
PC, MARr, and Memr. IE transition can be subdivided 
into IR, 2 wd, Iwd, Ex1wd, and Ex2wd, IR, which 
decode instruction and types it into one word (1wd) 
or two word (2wd). This provides some facts. First, 
when the instruction typed into two words, ID must 
inform MAR for reading the second  word. Second, 
after executing any instruction MAR must informed 
to provide to read a new word. Third,  after executing 
any instruction IR must informed to ensure that the 
processor is idle and ready for latching new fetched 
instruction and sending to ID for decoding and 
execution. These refinement observations are 
illustrated in Fig 2. When an instruction is reached in 
IR, the ID decodes and executes this instruction. 
During the execution of an instruction, the IR must 
not change its content. So the condition “the 
execution complete and the processor is idle “must 
connect on input of IR to prevent IR from receiving 
new instruction, until the execution complete. 
The two-word instruction is decoded into load 
accumulator or load general register. The load 
accumulator instruction is refined into decoded 
instruction (LdAcc) and execution action (Accdta). 
The execution action (Accdta) can not complete until 
the second word fetched from memory. The load 
general register instruction is also refined into decode 
instruction (LdGR) and execution action (GR). Also 
the GR wait for second word. One word instruction is 
decoded into Arithmetic or store instruction. The 
arithmetic instruction is suddivided into Arth, and 
execution action (Accres). The store instruction also 
subdivided into store, MAR w, and execution action 
(MeMw). Fig. 3 shows these refinements. 
When we analyze the HOPN presented in Fig. 3, we 
find that, this HOPN is live (since any transition can 
be enabled at some reachable marking), free of 
deadlocks (any reachable marking make some 
transition enables), and safe (any place contain only 
one or zero token at any reachable marking). But the 

concurrency between the transitions is low. The 
operation of presenting data in all register never 
traverses with other operation. Therefore, any 
arithmetic instruction can be executed concurrently 
with fetching the next word from memory. When 
instruction is presented in the instruction register and 
decoded in the instruction decoder, then an 
acknowledgement can be sent to MAR to proceed (for 
reading new word). But the acknowledgment “the 
execution complete” is sent to IR (since the new 
fetched word wait at IR for proceeding). This 
improvement is shown in Fig. 4. Analyzing the 
behavior of the processor shows that, the degree of 
concurrency is still low. So we can observe that the 
instruction decoding may take a long time, and can 
proceed concurrently with fetching the next word 
from memory. The previous version could only allow 
fetching after the instruction was decoded. If the 
MAR receive an acknowledgment from the 
instruction register at earlier stage (before decoding 
instruction) to fetch the next word, while the 
instruction decoder decodes the instruction. 
   This means that, the fetching of the next word can 
be done simultaneously with instruction decoding.  So 
when the execution of any instruction be complete, it 
must tell IR to end the current fetch, by sending new 
fetched instruction to ID and start new fetching. ID 
then begins the execution of the fetched instruction, 
which received from IR, and so on. If the instruction 
is classified into arithmetic/ store instruction, then 
arithmetic/ store proceed with fetching (which may be 
faster than the execution of instruction). The IR may 
receive new word, while the current instruction still in 
execution. So we must put additional place on input 
of both arithmetic and store transitions, to stop 
execution of any new instruction until the current one 
complete. If the store instruction is decoded, then it 
needs to access MAR (which may be busy with 
fetching). So we must guarantee that, if the MAR is 
used in fetching, then store must wait until the 
fetching is complete. Then both MAR w and MAR r 
transitions must   share  one place “condition”. This 
place will represent the conditions “completion of 
execution”, fetching second word”, or “completion of 
fetching”. This shared place will resolve the mutual 
excursion problem between a pair of requests to 
MAR. then this place will act as a semaphore for the 
actions involving MAR. independent requests to 
MAR have to complete for one token in this place, 
thus resolving the mutual exclusion problem. This 
place is shown as a dashed place Fig 5. 
Unfortunately, if the instruction is decoded into store 
instruction, and sent a request to access MAR, 
simultaneously with the program counter’s increment 
loop, then store may lose its request for the mutual 
exclusion token (since, if MAR r fires then MAR w 
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must wait for the next time). At this instant, the 
HOPN will deadlock (no transition be enabled). The 
new fetched word will not be able to advance because 
it is waiting for the instruction register to be cleared, 
at the same time, the instruction register waits for 
completing store. Now, for solving this problem, we 
need an additional register to store the new fetched 
word temporarily, and allow  MSR to accept the 
request from store (to balance between the two 
requests for MAR).  Analysis with this modification 
leads to the fact that, IR must restrict PC’s increment 
if and only if the additional register is pipeline.  This 
is introduced in the form of an additional dependency 
constraint (new place) which is dashed  in  Fig 5. 

Verification of this HOPN shows that it is live, safe, 
free of deadlocks, and the conflict between MAR’s 
requests have been resolved. Also the degree of 
concurrency will  increase. Now, if we want to 
increase the degree of concurrency  we introduce a 
second additional register. As shown in Fig 6, this 
second additional register gives us higher degree of 
concurrency between transitions. Analysing this 
HOPN  shows that this HOPN is live, safe, and 
deadlocks free. Fig 6 gives us the fourth version of 
the processor. We will stop at this version as an end 
to the analysis. For the concurrency degree see [Sem 
97]. 
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5. Validity Analysis of processor 
    (version 4) 
 
We use the relation between the T- invariant and the 
potential firability of the goal  transition to check the 
validity of our design. This depends on finding valid 
sequence to execute the instruction and return to the 
initial marking after completion of execution (firing 
the goal transition). A sequence σ must be found 
including the goal transition (the transition that 
completes the execution). There exists a relationship 
between σ and T- invariant of the HOPN. The 
following  theorem gives this relation  
Theorem. Let HOPN= (P, T, E, W, M0) be a higher 
order Petri net that has all transitions with indegree ≤ 
1. Let tg be a goal transition in T. there exists a firing 
sequence σ to reproduce the initial  marking M0 and 
to fire the goal transition tg   iff HOPN has a T- 
invariant X such that X ≥ 0 and X (tg) ≠ 0. 
Proof. First we prove the  necessity. 
If there exists a sequence σ, from the relation between 
markings M= M0 + f (σ). A, where f (σ) is the count 
vector of σ whose entry j denotes the occurrence of tj 
in σ, and A is the incidence matrix. This leads to  M= 
M0, thus the product f (σ). A must be equal zero. Let f 
(σ)= X,X ′′ is m- vector (row vector). Then X′  . 
A= 0  Atr = 0, Where 

trXX ′=′ (i.e. X is column 
vector). Then HOPN has T- invariant X such that X ≥ 
0 and X (tg) ≠0. 
The sufficiency can be proved as follows: 
Let he HOPN has T- invariant X such that X ≥ 0 and 
X (tg) ≠ 0.From the definition of T- invariant, we find 
that Atr ° X= 0, X is column vector. This leads to X′ . 
A= 0, X′  is the transition of X, since X ≥ 0 then 
X′  ≥ 0, also X′  (tg) ≠ 0. From  the relation 
between markings, we find that M= M0 + X′ . A      
M= M0, which means that, there exists a sequence σ 
(which is count vector  X′ ) includes the goal 
transition and reproduces the initial marking. 
We apply this theorem to the HOPN in Fig 6. It is 
clear that there exists a sequence corresponding to 

executing each instruction.  For add instruction there 
exist the sequence σ1= (PC, MARr, Memr, Latch1, 
Latch2, IR, Arth, ALU, Accres), where the goal 
transition is “Accres”. For the store instruction there 
exist the sequence σ2= (PC, MARr, Memr, Latch2, IR, 
Store, MARw, Memw), where the goal transitions is 
“Memw”. For Load General Register (LdGR) 
instruction there exist the sequence σ3= (PC, MARr, 
Memr, Latch1, Latch2, IR, LdGR, PC, MARr, Memr, 
Latch1, Latch2, GR), where the goal transition is 
“GR”. For load Accumulator (LdAcc) instruction 
there exist the sequence σ4= (PC, MARr, Memr, 
Latch1, Latch2, IR, Ldacc, PC, MARr, Memr, Latch1, 
Latch2, Accdta), where the goal transition is 
“Accdta”. For these four sequences σ1, σ2, σ3, and σ4 
there are  vectors X1, X2, X3, and X4 respectively. The 
entry j in any vector XI represents the occurrence of 
the corresponding transition the transitions are 
ordered as they arranged in the incidence matrix). 
These vectors X1, X2, X3, and X4 can be interpreted as 
they arranged in the incidence matrix). These vectors 
X1, X2, X3, and X4 can be interpreted as re- T- 
invariant as they satisfy the condition Atr 

° XI= 0, I= 
1,2,3,4 and ° is the matrix product, A is incidence 
matrix [Tom 97]. From this we can ensure that, the 
implementation is accurate. Also the connections in 
HOPN are well defined, and each instruction can 
execute without interrupts (deadlock free). After 
execution of each instruction the marking returns to 
initial marking M0 (liveness), and the HOPN is safe. 
To show the hardware equivalent of a HOPN, we can 
perform two operations: 
1. Net-level transformation. As an example a kth-
order arc can be transformed into a sequence of 2nd-
order arcs, as in Fig. 7(a). 
The complete set of these transformations is 
given in  [Has01]. The corresponding 
asynchronous circuit is presented in Fig 8. The 
heavy lines represent the  data transfer between 
modules. 
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2. Circuit synthesis.  The second order arc can be translated into a Muller C element, as in Fig. 7(b) 
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6. Conclusion 
Higher-Order Petri nets have been successfully used 
to model an asynchronous processor. This proves that 
this new class of Petri nets is able to model general 
asynchronous  systems. The fact that we have 
considered a special  processor does not affect the 
generality of the approach. It was shown that the 
behavior of an event in HOPN is similar to that of an 
asynchronous circuit. Using top-down approach has 
enabled us to  refine different versions of the 
processor. In each case we have ensured that the 
liveness, safeness, and deadlock-free properties. From 
the analysis point of view, the existence of an 
executable sequence is guaranteed.  A theorem 
concerning the relationship between the potential 
friability of the goal transition and the T-invariant has 
been proved. When the goal transition fires, it 
completes the instruction and returns to the initial 
marking. The practical applications of the theorem 
cover other fields. We have found that  HOPNs are 
capable to describe the actions of asynchronous 
circuits. HOPNs can better describe the control that is 
necessary for transforming the nets into asynchronous 
circuits than the classical PNs. 
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