
DESIGN AND VALIDITY ANALYSIS OF ASYNCHRONOUS
PROCESSORS USING HIGHER-ORDER PETRI NETS

MUSTSFA SAMI MAHMOUD

Professor of Computer Science
 Helwan University

ALI MOHAMMED MELIGY
Associate Professor of Computer Science

Menoufya University

AZEZ SHAFIK
Lecturer of Mathematics
 Menoufya University

MUSAAD WAGEH HASSAN
Ass. Lecturer of Computer Science

Tanta University

Abstract

 Many researches look for new processor approaches
to work with high-performance, battery-powered
devices, such as cellular phones. In this paper we
present an approach for designing an asynchronous
processor using higher-order Petri nets (HOPN).
HOPNs form a new class of Petri nets that exploits
the properties of higher-order neural networks. The
concepts of higher-order arcs will be applied in order
to model accurate circuit properties, such as timing
information, connection, and concurrency. We
consider HOPNs with transitions that have indegree
≤ 1. As a prototype for our design approach we use
Holton’s Processor. We follow the top-down design,
in which we refine the top-level specification until we
reach to the implementable level. For analyzing the
HOPN, a theorem on the relationship between the
potential firability of the goal transition and T-
invariant is proved. The circuit synthesis
corresponding to the HOPN is discussed. We use the
properties of the HOPNs to check the validity of our
design.
Index words: Petri nets (PN), higher-order Petri nets
(HOPN), Processor design, Holton’s processor
model, Validity analysis.

1. Introduction

 Many ideas have been proposed by various
researchers to make future microprocessors run at
higher frequencies than current ones. New approaches
are needed to deal with associated problems including
heat elimination and power consumption. One
promising approach is the asynchronous design,
where no global circuit clock exists. This approach
has implications for low power circuits such as those
needed for cellular phones, PDAs, and other high-
performance, battery-powered devices [GEE05]

 Petri nets have been widely used for the modeling
and analysis of concurrent systems [Rei85]. There are
many factors that contribute to their success: The
graphical nature, the ability to model parallel and
distributed processes in natural manner, the simplicity
of the model, and the firm mathematical foundations.
Petri nets are also used in the real-time systems and
logic applications. The firm mathematical foundations
make Petri nets useful in expressing potential hazards
in circuits. Also Petri nets can be used as a modeling
language to perform formal synthesis and high-level
analysis of complex processor, and signal processing
chips design. Petri nets can translate into VHDL, and
can be integrated into existing design environments
[Sem97].
 In some cases, the classical Petri nets can not model
the behavior of the system accurately. To solve this
problem, researchers proposed many extensions to the
basic Petri nets. Examples are: Timed Petri nets
[Van89] and [Ajm84]; colored Petri nets [Gen81] and
[Van89].
In the same sense [Cho97] used the similarities
between neural networks and Petri nets to exploit the
properties of higher-order neural networks in a new
class of Petri nets called Higher Order Petri Nets
(HOPN). He uses the heuristic introduction of higher-
order synaptic weights in neural networks to extend
the concept of an arc in PN to a general higher-order
arc. This extension makes the new class of Petri net
more accurate in modeling asynchronous circuits
properties. In section 2 the concepts and the structures
of higher-order Petri nets are briefly reviewed.
 The design of an asynchronous processor takes
place in most researchers' work. Several design
groups introduce asynchronous processor designs.
Among them, Amulet1 from Manchester university
[Fur93], an asynchronous microprocessor from the
California Institute of Technology in Pasadena [Mar
90], the Mayfly microprocessor from Hewlett-

 2

Packard Labs [Dav 92], and the TITAC from Tokyo
Institute of Technology [Tak 94].
 Each of these design groups used their own notation
during the design process. For example, the design
produced by [Fur93] represented virtually without
using formal methods. The Amulet1 is an
implementation or the ARM processor architecture
using the micropipeline design style. The
microprocessor designed by [Mar90] used a language
called Communication Hardware processor. [Dav92]
used algebraic models to verify the specifications and
implementations of finite state machines for the
Mayfly distributed memory microprocessor. The
TITAC design based on quasi-delay-insensitive is a
hardware chip designed and implemented as a CMOS
gate array.
There was also early attempts to model and analyze
processors formally. [Sem97] produce the
asynchronous design of Holton’s processor, which
demonstrates the fundamentals of processor
operation. This design is scalable and can be
developed further into a fully operational version. His

aim was not to develop a complete hardware device,
but to demonstrate design methods that use Petri nets
and their modeling power. In section 3 we present the
Holton’s processor, which demonstrates the
fundamentals of processor operation. This processor
will be the prototype of our asynchronous design.
 In section 4 we introduce the basic design of
Holton’s processor using the same top-down
specifications that used in [Sem97]. We produce a
labeled higher-order Petri net that has only labeled
transition with actions of the corresponding modules.
 In section 5 the relation between the T-invariant
and potential firing of the goal transition is discussed.
A theorem has been stated and proved that can be
used in analysing the labeled higher-order Petri nets
properties such as safeness, liveness, and deadlocks
free.
 In section 6 we discuss the translating of the
higher-order Petri nets into hardware elements. The
asynchronous circuit synthesis corresponding to
labeled higher-order Petri net is given. The
conclusion is drawn in section 7.

Clock

Instruction
decoder

Add
Store
LdAcc

ClkStar

Instruction
register

Buffe
Clock

Program Buffe
Clock

Buffe
Clock

Buffe
Clock

Buffe
Clock

Buffe

General

Acc

Address

Memory

Buffe
Clock

ALU

Fig 1: Synchronous implementation of a processor

 3

2. Higher-Order Petri Nets (HOPN)

A classical marked Petri net is a 5-tuple PN=(P, T, F,
W, Mo) , where P = { p1 , p2 , ……. , pn } is a finite
set of places, P ≠ Ø ; T = { t1 , t2 , ……. , tm } is a
finite set of transitions, T ≠ Ø ; P ∩ T = Ø, P ∪ T ≠
Ø , m > 0, n > 0; F ⊆ (Tx P) ∪ (P x T) is a set of
arcs; W:F → N is the weight function; M0: P → N is
the initial marking.
Definition of a HOPN: A Higher_Order Petri Net is
also a 5-tuple, HOPN= (P, T, F, W, M0), where P, T
and M0 are defined as in the classical case; F ⊆ (P x
T) ∪ (P2 x T) ∪ … ∪ (Pn x T) ∪ (T x P) is a set of
arcs. IF f∈ (Pi x T), the f is called the ith-order arc;
W:F→ N is a weight function, where N represents the
set of nonnegative integers. The major differences
between an HOPN and a classical PN are the
definitions of the arc and the weight function. In

HOPN, we denote
)(

)}({
i

ir k
f where

)(
)({

i
ir k

f ∈ (Pk x T), k= 1.2,… n and
)j(

)}i(r{ k
w as the

kth order input arc of transition t, from places Pr (1),
Pr (2),…, Pr(k), and its corresponding weight
respectively, where {r (I)} k= {r (I), r (2),… R (k)} ⊆
{1, 2, …, n} and r (I) < r (2) <… < r (k). We also
denote arc ftf as the out put arc from transition tI to
place Pj, where Ftj ∈ (T x P), and its corresponding
weight as vij.
A transition tj is enabled iff

 ∃
)j(

)}i(r{ k
f ∈ (Pk x T) ∋

)j(
)}i(r{ k

W ≤

)j(
)}i(r{ k

Q ∀
)j(

)}i(r{ k
P

Where
)j(

)}i(r{ k
P = { Pr(1) , Pr (2) ,…, Pr (k)} and { r (1),

r(2),…, r (k)} ⊆ {1, 2, …, n}, k= 1, 2, …, n,
 Q (P{r (I)}k) is the number of tokens in input places Pr

(1), Pr (2), …, Pr (k) connected on the kth order input arc
)j(

)}i(r{ k
f of transition tj. This means that, the

transition tj is said to be enabled if at least one of its
kth order input arcs has places that have at least many
tokens as the weight of this kth order arc. Such an arc
is called an enabled arc. This leads us to the fact that,
it may be exist more than one enabled arc. But one
enabled arc alone can make the transition enabled.
An enabled transition tj may or may not fire. When tj
fires then one of its enabled arcs fires. Let the arc

)j(
)}i(r{ k

f fire Q (P {r (I)}k) = Q(P {r (I)}k) -
)j(

)}i(r{ k
W , ∀

(P {r (I)}k) ∈ PIN (tj) ∧ Q (Pout (tj)) = Q (Pout (tj)) + W
(Pout, tj), ∀ Pout, (tj) ∈ Pout (tj), ∈ Pout (tj), ∀ P{r (I)}k ∈
PIN (tj) Where Q (P {r (I)} k) is the new number of
tokens in input places Pr (I), Pr (2) ,…, Pr (k) connected

on the kth- order input arc
)j(

)}i(r{ k
f of transition tj.

This means that when the transition tj fires then the
number of tokens in each of the input places p{r (I)}k
related to the fired arc is reduced by the number that
is equal to the weights assigned to the fired arc from
p{r (I)} k to tj, and the number of tokens in each of its
output places increases by the number that is equal to
the weights of the output arcs from the transition tj.
The reachability set R (PN, M0), for a higher- order
petri net HOPN= (P, T, F, W, M0), is the set of all
markings that can be reached from its initial marking
by all possible firings of transitions. R (PN, M0)= {
Mk: Mk= δ (M0, σ), k= 0,1,2,……}, where σ is the
sequence of all possible firing of enabled transitions
initially with the initial marking M0 until we reach to
the marking Mk.
Safeness is one of the more important properties for
higher- order petri net which is useful to model a real
hardware device. A place PI is safe iff Q (PI) ≤ 1 ∀ MI
∈ R (PN, M0), i= 0,1,2,….. A higher order petri net is
said to be safe iff Q (PI) ≤1 ∀ MI ∈ R (PN, M0) ∀ PI
∈ P, I= 0,1,2,…… That is, a higher order petri net is
safe if all places in the net are safe at any marking.
A transition tj is deadlock iff

Q (Pin (tj)) <)j(
)}i(r{ k

W

 ∀ Ms∈ R (PN, M0) I, j, s, k ∈ K.
For all or some (Pin (tj) ∈ PIN (tj).
A transition tj is deadlock (blocked) if there is no
any reachable marking can make this transition
enabled. Also a reachable marking is deadlock if
it can not make any transition enabled. A higher-
order petri net is deadlock at marking MK ∈ R
(PN, M0) iff

Q (Pin (tj)) <)j(
)}i(r{ k

W ∀ tj ∈ T I, j, s, k ∈ K.

For all or some (Pin , (tj) ∈ PIN (tj).
That is, a higher- order petri net is deadlock if all
transitions are not enabled at certain marking. So
a higher- order Petri net is free of deadlocks if its
reachability set includes no deadlocks.
A transition tj is live iff
 ∃ MI ∈ R (PN, M0) s.t Q (Pin (tj)) ≥ W (Pin, tj)
at MI

 4

∀ Pin (tj)) ∈ PIN (tj) and Mk = δ (MI, tj), Mk ∈ R
(PN, M0)
That is, a transition is live if it not deadlock. This
does not mean that the transition is enabled at
any marking, but rather than it can be enabled. In
other word there exist marking MI ∈ R (PN, M0)
can make tj enabled.
(i.e. ∃ MI ∈ R (PN, M0) s.t MI → Mk ∈ R (PN,
M0))
A higher- order petri net is live if MI ∈ R (PN,
M0) ∃ Mk ∈ R (PN, M0) s.t Mk = δ (MI, tj) ∀ tj ∈
T, I, j, k, ∈ K. That is, a higher- order petri
net is live its all transitions are live.
Transition ti and tj are in structural conflict if
 ∃ pk ∈ PIN(ti) ∧ pk ∈ PIN(tj)

This means that transitions ti and tj are in
structural conflict if they share at least one input
place.
Transition ti and tj are in dynamic conflict if
i. tI and tj are in structural conflict.
ii. Q (Pin k (tj)) ≥ W (Pin k, tj), Q (Pin s (tI)) ≥ W (Pin

s , tI)
∀ (Pin k (tj)) ∈ PIN (tj), ∀ (Pin s (tI)) ∈ (Pin s , tI) at
marking M1, where I, j, k, s, 1 ∈ K.
iii. If tI fires then Q (P in k (tj)) < W (Pin k, tj) for
some or for all Pin k (tj) ∈ PIN (tj).

In
st

ru
ct

io
n

ex
ec

ut
io

n

Instruction fetching

PC

P1

MAR

Mem

P2

IR

1wd 2wd

P1

Exlwd
Exlwd

P1 P2 P1 P2

Fig 2: Refinement for top- level
specification with simplified output arcs
and labeled their desired places by the
same label associated with arcs the arc
goes to the place that is its labeled
pointed

 5

3. Synchronous processor model

[Hol77] introduces the description of a simple 3- bit
processor design. This processor contains the major
operational modules; IR, ID, PC, GR, Acc, ALU, AD,
and Mem. All these modules contain the following
instruction set; load accumulator (LdAcc), load
general register (LdGR), arithmetic operation (Arth),
and store. The processor has no jump instruction. Fig.
1 illustrates the architecture of Holton processor
model. This design uses a common clock to
synchronize data transfer between processor modules.
The processor’s operational cycle is subdivided into
two phases; Fetch cycle that performed by the
program control unit, which must obtain the
instruction from main memory. Instruction cycle that
performed by the data processing unit, which must
execute the instruction fetched from memory. Each
phase requires two clock cycles. At the first cycle, the
PC is increment and the new value of the PC is
presented to memory. At the second cycle, MAR

specify the address at which the fetched word is read ,
and reading it from memory at the specified address
and latch the fetched word in the IR. Now the fetch
phase is complete and the processor enters the
execution phase. At the third cycle ID decodes the
instruction, and then the appropriate modules are
activated and connected to the common bus. At the
last cycle, complete the execution of instruction
fetched from memory.This model is synchronous and
has some problems:
1- Loss of power. Since each module is clocked at

each clock period, this will cause loss of power.
2- Inefficiency. The delay of the longest execution
cycle determines the clock period. Therefore, the
average speed of the processor is bounded by the
worst-case delay.
We use HOPNs to construct the asychronous version
of this synchronous processor. Especially, after
producing an asynchronous one using PN [Sem 97].
In chapter 5 we give the representation of the
asynchronous version of this processor using HOPN.

PC

P1

MAR

Mem

P2

IR

ArthStoreLdGRLdAcc

P1P1

MAR

Mem

ALU

Accres

P1 P2 P1 P2P1 P2P1 P2

Accdta GR

Fig 3: Model refinement for Holton’s
processor (first processor version)

 6

4. Asynchronous design using HOPN

In this section we use the same refinement used in
[Sem 97] to give labeled HOPN that contain labeled
transitions (each one correspond to one module in
Holton’s processor). Transition labels are action of
corresponding modules.
 When we consider the initial specification (general
consideration of the processor, such as the function of
the processor, how the processor works, or the
strategies of the work) we observe that, the processor
has two stages instruction fetch (IF) and instruction
execution (IE), in which the processor operates
mutually (one follow the other, but not
simultaneously). IF transition can be decomposed into
PC, MARr, and Memr. IE transition can be subdivided
into IR, 2 wd, Iwd, Ex1wd, and Ex2wd, IR, which
decode instruction and types it into one word (1wd)
or two word (2wd). This provides some facts. First,
when the instruction typed into two words, ID must
inform MAR for reading the second word. Second,
after executing any instruction MAR must informed
to provide to read a new word. Third, after executing
any instruction IR must informed to ensure that the
processor is idle and ready for latching new fetched
instruction and sending to ID for decoding and
execution. These refinement observations are
illustrated in Fig 2. When an instruction is reached in
IR, the ID decodes and executes this instruction.
During the execution of an instruction, the IR must
not change its content. So the condition “the
execution complete and the processor is idle “must
connect on input of IR to prevent IR from receiving
new instruction, until the execution complete.
The two-word instruction is decoded into load
accumulator or load general register. The load
accumulator instruction is refined into decoded
instruction (LdAcc) and execution action (Accdta).
The execution action (Accdta) can not complete until
the second word fetched from memory. The load
general register instruction is also refined into decode
instruction (LdGR) and execution action (GR). Also
the GR wait for second word. One word instruction is
decoded into Arithmetic or store instruction. The
arithmetic instruction is suddivided into Arth, and
execution action (Accres). The store instruction also
subdivided into store, MAR w, and execution action
(MeMw). Fig. 3 shows these refinements.
When we analyze the HOPN presented in Fig. 3, we
find that, this HOPN is live (since any transition can
be enabled at some reachable marking), free of
deadlocks (any reachable marking make some
transition enables), and safe (any place contain only
one or zero token at any reachable marking). But the

concurrency between the transitions is low. The
operation of presenting data in all register never
traverses with other operation. Therefore, any
arithmetic instruction can be executed concurrently
with fetching the next word from memory. When
instruction is presented in the instruction register and
decoded in the instruction decoder, then an
acknowledgement can be sent to MAR to proceed (for
reading new word). But the acknowledgment “the
execution complete” is sent to IR (since the new
fetched word wait at IR for proceeding). This
improvement is shown in Fig. 4. Analyzing the
behavior of the processor shows that, the degree of
concurrency is still low. So we can observe that the
instruction decoding may take a long time, and can
proceed concurrently with fetching the next word
from memory. The previous version could only allow
fetching after the instruction was decoded. If the
MAR receive an acknowledgment from the
instruction register at earlier stage (before decoding
instruction) to fetch the next word, while the
instruction decoder decodes the instruction.
 This means that, the fetching of the next word can
be done simultaneously with instruction decoding. So
when the execution of any instruction be complete, it
must tell IR to end the current fetch, by sending new
fetched instruction to ID and start new fetching. ID
then begins the execution of the fetched instruction,
which received from IR, and so on. If the instruction
is classified into arithmetic/ store instruction, then
arithmetic/ store proceed with fetching (which may be
faster than the execution of instruction). The IR may
receive new word, while the current instruction still in
execution. So we must put additional place on input
of both arithmetic and store transitions, to stop
execution of any new instruction until the current one
complete. If the store instruction is decoded, then it
needs to access MAR (which may be busy with
fetching). So we must guarantee that, if the MAR is
used in fetching, then store must wait until the
fetching is complete. Then both MAR w and MAR r
transitions must share one place “condition”. This
place will represent the conditions “completion of
execution”, fetching second word”, or “completion of
fetching”. This shared place will resolve the mutual
excursion problem between a pair of requests to
MAR. then this place will act as a semaphore for the
actions involving MAR. independent requests to
MAR have to complete for one token in this place,
thus resolving the mutual exclusion problem. This
place is shown as a dashed place Fig 5.
Unfortunately, if the instruction is decoded into store
instruction, and sent a request to access MAR,
simultaneously with the program counter’s increment
loop, then store may lose its request for the mutual
exclusion token (since, if MAR r fires then MAR w

 7

must wait for the next time). At this instant, the
HOPN will deadlock (no transition be enabled). The
new fetched word will not be able to advance because
it is waiting for the instruction register to be cleared,
at the same time, the instruction register waits for
completing store. Now, for solving this problem, we
need an additional register to store the new fetched
word temporarily, and allow MSR to accept the
request from store (to balance between the two
requests for MAR). Analysis with this modification
leads to the fact that, IR must restrict PC’s increment
if and only if the additional register is pipeline. This
is introduced in the form of an additional dependency
constraint (new place) which is dashed in Fig 5.

Verification of this HOPN shows that it is live, safe,
free of deadlocks, and the conflict between MAR’s
requests have been resolved. Also the degree of
concurrency will increase. Now, if we want to
increase the degree of concurrency we introduce a
second additional register. As shown in Fig 6, this
second additional register gives us higher degree of
concurrency between transitions. Analysing this
HOPN shows that this HOPN is live, safe, and
deadlocks free. Fig 6 gives us the fourth version of
the processor. We will stop at this version as an end
to the analysis. For the concurrency degree see [Sem
97].

PC

P1

MAR

Mem

P2

IR

ArthStoreLdGRLdAcc

P1P1

MAR

Mem

ALU

Accres

P1 P2 P2 P1 P2

P1 P2

Accdt

GR

P1

Fig 4: refinement with decoupled ALU action (version 2)

 8

GR

PC

MARr

Memr

P4

Latch

IR

P4

MARw

Memw

P1

P5

ALU

P1 P3 P4

P2

P3

P3

Arth

P2 P6

Store

P2

LdGR

P2

LdAcc

P1 P3P4

Accdta

P3
P1

Accre

P3

Fig 5: Pipelined
Processor Model

with one additional
register(Version 3)

 9

5. Validity Analysis of processor
 (version 4)

We use the relation between the T- invariant and the
potential firability of the goal transition to check the
validity of our design. This depends on finding valid
sequence to execute the instruction and return to the
initial marking after completion of execution (firing
the goal transition). A sequence σ must be found
including the goal transition (the transition that
completes the execution). There exists a relationship
between σ and T- invariant of the HOPN. The
following theorem gives this relation
Theorem. Let HOPN= (P, T, E, W, M0) be a higher
order Petri net that has all transitions with indegree ≤
1. Let tg be a goal transition in T. there exists a firing
sequence σ to reproduce the initial marking M0 and
to fire the goal transition tg iff HOPN has a T-
invariant X such that X ≥ 0 and X (tg) ≠ 0.
Proof. First we prove the necessity.
If there exists a sequence σ, from the relation between
markings M= M0 + f (σ). A, where f (σ) is the count
vector of σ whose entry j denotes the occurrence of tj
in σ, and A is the incidence matrix. This leads to M=
M0, thus the product f (σ). A must be equal zero. Let f
(σ)= X,X ′′ is m- vector (row vector). Then X′ .
A= 0 Atr = 0, Where

trXX ′=′ (i.e. X is column
vector). Then HOPN has T- invariant X such that X ≥
0 and X (tg) ≠0.
The sufficiency can be proved as follows:
Let he HOPN has T- invariant X such that X ≥ 0 and
X (tg) ≠ 0.From the definition of T- invariant, we find
that Atr ° X= 0, X is column vector. This leads to X′ .
A= 0, X′ is the transition of X, since X ≥ 0 then
X′ ≥ 0, also X′ (tg) ≠ 0. From the relation
between markings, we find that M= M0 + X′ . A
M= M0, which means that, there exists a sequence σ
(which is count vector X′) includes the goal
transition and reproduces the initial marking.
We apply this theorem to the HOPN in Fig 6. It is
clear that there exists a sequence corresponding to

executing each instruction. For add instruction there
exist the sequence σ1= (PC, MARr, Memr, Latch1,
Latch2, IR, Arth, ALU, Accres), where the goal
transition is “Accres”. For the store instruction there
exist the sequence σ2= (PC, MARr, Memr, Latch2, IR,
Store, MARw, Memw), where the goal transitions is
“Memw”. For Load General Register (LdGR)
instruction there exist the sequence σ3= (PC, MARr,
Memr, Latch1, Latch2, IR, LdGR, PC, MARr, Memr,
Latch1, Latch2, GR), where the goal transition is
“GR”. For load Accumulator (LdAcc) instruction
there exist the sequence σ4= (PC, MARr, Memr,
Latch1, Latch2, IR, Ldacc, PC, MARr, Memr, Latch1,
Latch2, Accdta), where the goal transition is
“Accdta”. For these four sequences σ1, σ2, σ3, and σ4
there are vectors X1, X2, X3, and X4 respectively. The
entry j in any vector XI represents the occurrence of
the corresponding transition the transitions are
ordered as they arranged in the incidence matrix).
These vectors X1, X2, X3, and X4 can be interpreted as
they arranged in the incidence matrix). These vectors
X1, X2, X3, and X4 can be interpreted as re- T-
invariant as they satisfy the condition Atr

° XI= 0, I=
1,2,3,4 and ° is the matrix product, A is incidence
matrix [Tom 97]. From this we can ensure that, the
implementation is accurate. Also the connections in
HOPN are well defined, and each instruction can
execute without interrupts (deadlock free). After
execution of each instruction the marking returns to
initial marking M0 (liveness), and the HOPN is safe.
To show the hardware equivalent of a HOPN, we can
perform two operations:
1. Net-level transformation. As an example a kth-
order arc can be transformed into a sequence of 2nd-
order arcs, as in Fig. 7(a).
The complete set of these transformations is
given in [Has01]. The corresponding
asynchronous circuit is presented in Fig 8. The
heavy lines represent the data transfer between
modules.

 10

PC

MARr

Memr

Latch1

MARw

Memw

P4

P3

P2

Accdta

P4
P5

GR

P1 P3

P6
P2

P1 P3P4

Accres

IR

P4

ALU

P2

P3

Arth

P2

Store

LdGR LdAcc

P3

Fig 6: Pipelined
Processor Model with two
additional Registers
(Version 4)

Shr-ackM

Reqr

MARr

ack

Shr-ackL

MARr

Reqr

ack

Shr-ackL

Shr-ackM

Fig 7(a):
Dividing a 3rd
order arc into
two 2nd order
arcs and an
additional
transition

 11

2. Circuit synthesis. The second order arc can be translated into a Muller C element, as in Fig. 7(b)

PC

R
G
D

M AR M em Latch 1 Latch2
CC

C

Start

IR ID

Ldacc

LD G R

A dd

Store

C

A ccum -
ulator

ALU

G eneral
register

Fig 8: Circuit
Synthesis of
Holton’s Processor
(Version 4)

C

Fig. 7(b) A
second order arc
translates into a
Muller C
element

 12

6. Conclusion
Higher-Order Petri nets have been successfully used
to model an asynchronous processor. This proves that
this new class of Petri nets is able to model general
asynchronous systems. The fact that we have
considered a special processor does not affect the
generality of the approach. It was shown that the
behavior of an event in HOPN is similar to that of an
asynchronous circuit. Using top-down approach has
enabled us to refine different versions of the
processor. In each case we have ensured that the
liveness, safeness, and deadlock-free properties. From
the analysis point of view, the existence of an
executable sequence is guaranteed. A theorem
concerning the relationship between the potential
friability of the goal transition and the T-invariant has
been proved. When the goal transition fires, it
completes the instruction and returns to the initial
marking. The practical applications of the theorem
cover other fields. We have found that HOPNs are
capable to describe the actions of asynchronous
circuits. HOPNs can better describe the control that is
necessary for transforming the nets into asynchronous
circuits than the classical PNs.

References
[Ajm84] M. Ajmone et al.
A Class of Generalized Stochastic Petri Nets for the
Performance Evaluation of Multiprocessor Systems.
ACM Transactions on Computer Systems, 2(1984),
pp. 93-122.
[Cho97] Tommy W.S. Chow, Jin-Yan Li
Higher-Order Petri Net Models Based on Artificial
Neural Networks.
Artificial Intelligence 92(1997), pp. 289-300.
[Dav92] Davis, A. L.
Mayfly: A General-Purpose, scalable, parallel
processing architecture.
LISP and Symbolic Computations Vol 5, May 1992,
pp. 7-47.

[Fur 93] S.B. Furber et al.
A Micropipelined ARM. Proc. VLSI 93, North
Holland, Amsterdam, 1993, pp. 4.4.1-5.4.10.
[GEE 05] David Geer
Is It Time for Clockless Chips?
Computer(IEEE), March 2005 , pp. 18-21
[Gen81] Genrich, H. J. and Lautenbach, K.
System Modeling with High Level Petri Nets
Thepretical Computer Science, 13(1981), pp.109-136.
[Has01] Mosaad W. S. A. Hassan
Asynchronous Processor Design Using Higher-Order
Petri Nets.
Master Thesis, Faculty of Science, Menoufya
University, 2001.
[Hol 77] W.C.Holton
The Large-Scale Integration of Microelectronic
Circuits
Scientific American, 1977, pp. 82—94.
[Mar90]A.J. Martin
Collected Papers on Asynchronous VLSI Design.
Tech. Report CS-TR-90-09, Calif. Inst. Of
Technology, Pasadena, 1990.
[Rei85] Reisig, W.
Petri nets: An introduction. Prentice-Hall Englewood
Cliffs. 1985.
[Sem97] Semenove, A et al.
Designing an Asynchronous Processor Using Petri
nets. IEEE Micro, 1997, pp. 54-63.
[Tak94] T. Nanya et al.
TITAC: Design of Quasi-Delay-Insensitive
Microprocessor”, IEEE
Design & Test of Computers, Vol. 11, No. 2, Summer
1994, pp. 50-63.
[Van89] Van Hee, K. M. et el.
Executable Specifications for Distributed Information
Systems.
Proc. IFIP Conference on Information Systems
Concepts, Elsevier Science Publ., Amsterdam 1989,
pp. 139-156.

